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This paper deals with a new "nite di!erence method for modal parameter
estimation. This method uses formulas which involve di!erences between the
frequency response data at three frequencies in the vicinity of a natural frequency
to estimate this natural frequency together with the damping and the residue.
Compared with the two-point "nite di!erence method, tests with both analytical
and experimental frequency response data with not well-separated modes show
better estimations when using the three-point di!erence method.
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1. INTRODUCTION

Modal analysis which embraces both theoretical and experimental techniques is the
process of determining the inherent dynamic characteristics of a system and using
them to formulate a mathematical model of the dynamic behavior of the system. As
an experimental technique of modal analysis, modal testing involves measuring the
dynamic response functions such as frequency response functions (FRF) and
estimating modal parameters of a system: i.e., natural frequencies, damping factors
and modal coe$cients.

The single-mode methods (called also s.d.o.f. methods) like the power bandwidth
method, the circle "t method [1, 2] and the two-point "nite di!erence method [3]
are classical methods of modal parameters estimation. In the last two decades,
multiple-mode methods (called also m.d.o.f. methods) have been investigated by
many papers [4}62]. In the frequency domain, these methods generally use
a least-squares method to select the modal parameters that minimize the di!erence
between the measured frequency function and the function found by summing the
contribution from the individual modes. It is not the aim of this paper to survey the
numerous algorithms for modal parameter estimation. A review of current
algorithms has been given in references [3, 7, 8]. Multiple-mode methods are more
accurate for structures with closely spaced modes, particularly when heavily
damped. However, the single-mode methods are quick, rarely involving much
mathematical manipulation of the data, and give su$ciently accurate results of
modal parameters for structures with well-separated modes. These methods are
also satisfactory in situations where accuracy is of secondary concern.
0022-460X/00/120259#17 $35.00/0 ( 2000 Academic Press
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This paper presents a three-point "nite di!erence method which gives improved
accuracy when compared with the two-point "nite di!erence method. A clear
presentation of the two-point "nite di!erence method can be found in reference [3].
This method is presented here in section 2 to facilitate the understanding and the
comparison with the three-point "nite di!erence method. Both methods are
illustrated for single- and two-degrees-of-freedom systems with well-separated
modes and with closely spaced modes. Least-squares solution will be used for
experimental frequency data.

2. TWO-POINT APPROXIMATION

2.1. FREQUENCY RESPONSE FUNCTION

For a linear system, the FRF can be written as a sum of partial fraction functions,
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For example, the FRF of a single-degree-of-freedom system (s.d.o.f.) with viscous
damping (mass}spring}damper system) is
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where M, C and K are, respectively, the mass constant, damping constant and
sti!ness constant of the system; uN

1
"JK/M and f"C/2JKM are, respectively,

the undamped natural frequency and the damping ratio.
The FRF of a s.d.o.f. can be written in the form of equation (1) as
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2.2. TWO FREQUENCY FORMULATION

For any two di!erent frequencies u
1

and u
2

near the damped natural frequency
uJ

r
, the correspondent values of the frequency response function de"ned by
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equation (1) can be obtained by the following approximate relationships:
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Like other modes, the complex conjugate term is neglected. In fact, its amplitude
is of same order, often smaller than those of other modes.

The "nite di!erence relationships are formulated as follows:

H (u
1
)!H (u

2
)+

AI
r
j (u

2
!u

1
)

( ju
1
!jI

r
) ( ju

2
!jI

r
)
, (6)

ju
1
H (u

1
)!ju

2
H (u

2
)+

AI
r
j (u

2
!u

1
)jI

r
( ju

1
!jI

r
) ( ju

2
!jI

r
)
, (7)

j (u
2
!u

1
)H (u

1
)H (u

2
)+

AI
r
j (u

2
!u

1
)AI

r
( ju

1
!jI

r
) ( ju

2
!jI

r
)
. (8)

Now, one can de"ne the two following functions:
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From equations (6)}(8), the following approximate relationships can be found:
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In practice, it is customary to equally distribute both frequencies around the
peak (e.g. at the 453 points, having an equal phase-angle di!erence with the peak
frequency FRF value). Let u~, u` denote a couple of such frequencies, u~ on the
left and u` on the right; the following equations can then be used to estimate the
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modal frequency jI
r
and the residue AI

r
:
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It is clear that these equations provide acceptable estimations of jI
r
and AI
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only

when u~ and u` are in the vicinity of the damped natural frequency since they are
based on the approximation represented by equations (4) and (5).

2.3. LEAST-SQUARES SOLUTION
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the following two sets of M linear equations, involving the same unknowns, can be
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These equations represent overdetermined sets of linear equations that can be
solved by using any pseudo-inverse or normal equations approach.

3. THREE-POINT APPROXIMATION

3.1. THREE-FREQUENCY FORMULATION

For any three di!erent values of frequency u
m
, m"1, 2, 3, near the damped

natural frequency uJ
r
, the correspondent values of the frequency response function

de"ned by equation (1) can be obtained by the following approximate relationships:
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In this expression of the FRF, the sum of the complex conjugate term and of all
rational fractions of other modes is approximated by a constant. So this
approximation is less restrictive than the approximation represented by equations
(4) and (5).
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For any couple of frequencies (u
m
, u
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), m"1, 2, 3, n"1, 2, 3, mOn, the "nite

derivation relationships are formulated as follows:
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Now, one can de"ne the two following functions:
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From equations (20), (21) and (22), the following approximate relationships can be
found:
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With this choice of frequencies, one can "nd
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Like the two-point approximation, the three-point approximation can provide
acceptable estimations only when u

r
, u~ and u` are in the vicinity of the damped

natural frequency uJ
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. However, the three-point approximation, since it is less

restrictive than the two-point approximation, would provide better estimations of
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3.2. LEAST-SQUARES SOLUTION
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Then the following two sets of linear equations involving the same unknowns can
be written:
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Figure 1. S.d.o.f. for two damping ratios: (a) 0)01; (b) 0)2. Modulus of the frequency response
function DH(u)/H(uL

1
) D (**) damping for the two-point formula (- - -) and for the three-point formula

(. . .) (on the curves the damping is divided by the theoretical value).
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Like equations (15) and (16), these equations represent overdetermined sets of linear
equations that can be solved by using any pseudo-inverse or normal equation
approach.

4. EXAMPLES WITH ANALYTICAL DATA

4.1. COMPARISON OF TWO- AND THREE-POINT FORMULAS FOR S.D.O.F.

To compare the results given by these two methods, a "rst example is calculated
for a system with a s.d.o.f. The frequency response function is calculated by formula
(1) for the natural frequency fM

1
"100 Hz and for two damping ratios f"0)01 and

f"0)2. Then, from this frequency response function, we try to identify the pole
using the two- and three-point formulas respectively. The results are presented in
Figure 1 for the two damping ratios. First, the modulus of the frequency response
function, normalized by the maximum modulus, is plotted versus the frequency,
showing a resonance near 100 Hz. The normalized damping ratio de"ned as the
real part of!j

r
/(fuN

1
), j

r
being given by estimates (13) and (31) with u

r
"uL

1
, is

plotted according to the frequency value (u~ on the left of u
r
and u` on the right).

The right frequency u` is chosen such that u
r
is the middle of [u~, u`]. So the

curve is symmetrical around u
r
. The two-point formula is accurate only in the

immediate vicinity of the damped natural frequency while the three-point formula
is more stable and gives accurate results over a larger frequency range, especially
for large damping ratios. Numerical results are provided in Table 1, obtained by
using the two-point formula (13) and the three-point formula (31) with u

r
"uL

1
,

u~"u
r
!10n, u`"u

r
#10n for di!erent damping ratios. The results for the

complex exponential method described in references [7, 8] are also given for
comparison. The three-point formula successfully identi"es the poles even in the
case of high damping. For the residues, the three-point formula is clearly superior
for all damping ratios. For high damping the accuracy decreases in both formulas.
The complex exponential gives good results because a "ne discretization using 5000
points has been used in the frequency domain to get an accurate estimate of the
TABLE 1

Comparison of poles and residues for two and three point formulas and the complex
exponential method in the case of a system with a s.d.o.f.

f 0)001 0)01 0)1 0)2

Exact value of jI
r

!0)628#628j !6)28#628j !62)8#625j !126#616j
Two-point formula !0)628#628j !6)28#627j !62)8#621j !126#602j
Three-point formula !0)629#628j !6)29#628j !63)0#625j !127#616j
Complex-exponential !0)628#628j !6)28#628j !62)8#625j !126#616j

Exact value of AI
r
(]10~3) 0}0)796j 0}0)796j 0}0)800j 0}0)812j

Two-point formula (]10~3) 0)001}0)796j 0)008}0)796j 0)080}0)796j 0)166}0)795j
Three-point formula (]10~3) 0)000}0)796j 0)000}0)796j 0)000}0)806j 0)002}0)839j
Complex exponential (]10~3) 0)000}0)796j 0)000}0)796j 0)000}0)800j 0)000}0)812j
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impulse response function especially for small damping ratio. This leads to a much
larger computational cost than the two- and three-point formulas.

4.2. COMPARISON OF TWO- AND THREE-POINT FORMULAS FOR M.D.O.F.

In Figures 2 and 3 results for a coupled problem with two natural frequencies
fM
1

and fM
2

and the same damping ratio f"0)05 associated with the two frequencies
are presented. Figure 2 presents the case of two well-separated modes with
fM
1
"100 Hz and fM

2
"150 Hz while Figure 3 presents the case of two closely spaced

modes with fM
1
"100 Hz and fM

2
"115 Hz. As in Figure 1, the modulus of the

frequency response function and the damping calculated by the two methods are
presented near the "rst and the second resonance. For the "rst mode, we use
u

r
"uL

1
in the formulas as the "xed central frequency while for the second mode,

the value u
r
"uL

2
is used. The curves presenting the values of the damping ratio

obtained by using equations (13) and (31) are plotted versus the frequency value as
in Figure 1, but this time, separately for each mode. The three-point formula is still
superior to the two-point formula, being more stable and closer to the parameter to
estimate. This is especially true in Figure 3 where the three-point formula is able to
give correct estimates of the damping near the maximum of the frequency response
while the two-point formula su!ers from large deviations from the exact values. In
Table 2 numerical results of the identi"cation of the pole and residue of the second
resonance for di!erent damping ratios are presented. We use u

r
"uL

1
, u~"

u
r
!2n and u`"u

r
#2n. The three-point formula provides good results until

a damping ratio of 0)05. For larger values both formulas lead to important errors.
The two-point formula can lead to important errors in the estimates of the damping
and of the residue even for small damping. On the contrary, the three-point formula
is able to provide useful estimates. The results of the complex exponential method
are also presented with the same remarks as for Table 1. It is interesting to note that
the two-point formula generally provides overestimated values of damping ratios
while the three-point formula provides underestimated values.

5. EXAMPLE WITH EXPERIMENTAL DATA

5.1. DESCRIPTION OF THE EXPERIMENT

To test the preceding methods on a real case, an experiment was made with the
structure presented in Figure 4. This structure is built from three Plexiglas beams
positioned along a cross. The beam in the middle is a little shorter than the two
others. A random excitation signal has been used. This random excitation comes
from below by a shaker (B&K 4810) and is transmitted to the structure through an
impedance head (B &K 8001) which allows one to measure the acceleration and the
force just under the center of the structure. The acceleration is integrated two times
to get the displacement and the frequency response function between the
displacement and the force is recorded by a signal analyzer (DI-PL202). The
experimental modulus of the frequency response function is presented in part (a) of



Figure 2. M.d.o.f. with well-separated modes and a damping ratio of 0)05. Modulus of the
frequency response function DH(u)/H(uL

1
) D (**), damping for the two-point formula (- - -) and for the

three-point formula (. . .).
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Figure 3. Like Figure 2 but with closely spaced modes.
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TABLE 2

Comparison of poles and residues for two- and three-point formulas in the case of a system with
two degrees of freedom

f 10~3 0)01 0)05 0)1

Exact value of jI
r

!0)723#723j !7)23#723j !36)1#722j !72)3#719j
Two-point formula !0)730#723j !7)38#724j !47)8#732j !119)0#702j
Three-point formula !0)719#723j !7)14#723j !32)6#726j !84)9#764j
Complex exponential !0)722#722j !7)23#722j !36)1#722j !72)2#719j

Exact value of A
r
J (]10~3) 0}0)692j 0}0)692j 0}0)693j 0}0)695j

Two-point formula (]10~3) !0)011}0)685j !0)109}0)694j !0)531}0)961j !0)349}1)690j
Three-point formula (]10~3) 0)000}0)688j !0)003}0)675j !0)189}0)474j !1)140}0)132j
Complex exponential (]10~3) 0)000}0)692j 0)000}0)692j 0)000}0)693j 0)000}0)695j

Figure 4. Tested structure and excitation device.
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Figure 5. The frequency response function is normalized by the maximum value
obtained near the "rst resonance. In the frequency range considered there are three
modes; the "rst two are strongly coupled while the third is relatively isolated. This
frequency response function is used to calculate the poles and the residues by the
two- and three-point formulas.

5.2. MODAL PARAMETER IDENTIFICATION

In Figure 5(a) the modulus of the experimental frequency response data is
plotted. The FRF is measured between 0 and 600 Hz with a frequency step of
1)25 Hz. The following frequency ranges (in Hertz) are used in formulas (13) and
(31): "rst mode u

r
/2n"316)25, 297)5)u/2n)335; second mode u

r
/2n"

341)25, 322)5)u/2n)360; third mode u
r
/2n"507)5, 488)75)u/2n)526)25.

The damping values are calculated by equations (13) and (31) using u~ and
u` near the "rst, second and third resonance and are plotted in curves (b), (c) and
(d), respectively, according to the frequency value (u~ on the left of u

r
and u` on

the right). The three-point formula is more stable over a larger range than the
two-point formula. For example, the results of the "rst mode are almost constant
for 302)5)u~/2n)312)5 and 320)u`/2n)330 with the three-point formula
Figure 5. Experimental results. Measured modulus (**) and identi"ed damping ratio (]50) for
the two-point formula (###) and for the three-point formula (]]]).
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while the stablity range is much smaller when using the two-point formula. As in
the examples with analytical data, the estimated values for frequencies further away
from u

r
lead to large errors. The results are not accurate for frequencies very close

to u
r

because of noise in the experimental data, especially for the three-point
formula. For the three-point formula, the frequencies in the range
307)5)u/2n)312)5 for u~ and symmetric values for u` around 316)25 are
chosen to form the system of linear equations for the "nal estimation of the modal
parameters of the "rst mode by the method of least squares. In the same way, we
chose, for the second mode the frequencies in the range 332)5)u/2n)337)5 for
u~ and for the third mode, the frequencies in the range 498)75)u/2n)503)75 for
u~. For the two-point formula the system of linear equations is formed with the
three frequency points near u

r
only because the estimation deviates quickly far

from u
r
. The modal parameters identi"ed with the two formulas are given in

Table 3.
The results show that the imaginary parts of the poles estimated by the two-point

formulation and the three-point formulation are very similar, while the real parts
and the damping ratio values show important di!erences. The estimated values of
the residues also show large discrepancies. The results of the two- and three-point
formulas are closer for the third mode because it was noticed in the preceding
analytical examples that a single mode is easier to identify than two closely spaced
modes. So the error should be lower in this case.

As in the examples with analytical data in the m.d.o.f. case, the damping ratio
estimated by the three-point formula is smaller than that estimated by the two-
point formula. Furthermore, the results for damping ratio with analytical data in
the m.d.o.f. case have shown that the two-point formula provides overestimation
while the three-point formula provides underestimation. This seems to indicate that
the value of the damping ratio estimated by the two-point formula and that
estimated by the three-point formula could be used as upper bound and lower
bound respectively.
TABLE 3

Results of poles and residues identi,cation by the two methods from experimental frequency
response function

Mode number 1 2 3

Two-point Pole !77)0#1989)6j !65)4#2145)0j !74)0#3191)2j
formula Damping ratio 0)0387 0)0305 0)0232

Residue !581)9#688)8j 42)5#702)4j !101)1#596)0j

Three-point Pole !50)7#1994)0j !45)2#2154)8j !69)1#3195)2j
formula Damping ratio 0)0254 0)0210 0)0216

Residue !198)7#367)7j 138)8#353)7j !23)7#550)1j

Complex Pole !51)2#2001)9j !49)7#2143)2j !71)3#3194)5j
exponential Damping ratio 0)0256 0)0232 0)0223

Residue !47)4#459)1j !13)5#484)3j !12)5#583)5j
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To evaluate the quality of the two estimates, two curves are plotted from these
two sets of values by calculating the frequency response function with formula (1)
by using the values of the poles and residues given in Table 3. The two curves are
compared to the experimental curve and to the curve plotted by using the
parameters estimated by the complex exponential method for the modulus of the
frequency response function in Figure 6. The value of the point at the frequency
1000 Hz (not represented on the curves) had been adjusted to make the calculated
frequency response functions equal to the measured frequency response function at
this point. This allows one to take into account the in#uence of higher order modes
which can be represented as a constant over the plotted frequency range. Once
again the results for the three-point formula are much better than for the two-point
formula. The shapes and the values near the resonances are much more closely
represented for the two coupled modes. For the third mode the di!erence is much
lower showing that for isolated resonances the two-point formula could be
su$cient.

5.3. DISCUSSION OF THE ESTIMATION PRACTICE

The following discussion of the estimation practice concerns the three-point
formula. The estimation practice for the two-point formula is similar.

There are three steps in modal parameters estimation when using the "nite
di!erence formulation in practice.
Figure 6. Comparison of the modulus of the experimental frequency response function (**) with
the curves plotted from identi"ed poles and residues with the two-point formula (} } } ), with the
three-point formula (- - -) and with the complex exponential method (. . .).
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At the "rst step, one chooses a "xed frequency u
r
as a reference value for each

mode. The "xed frequency must be close to the corresponding damped natural
frequency. Then one calculates, separately for each mode, the damping values using
equation (31) with experimental FRF data at each frequency in a range around the
"xed frequency. In general, results would show three di!erent frequency ranges:
a small one in the immediate vicinity of u

r
(u

r
!u~"u`!u

r
"d(e

1
) in which

the values of j
r
(u~, u`, u

r
) calculated by equation (31) can be unstable because of

noise in FRF data (however this range can be too small to appear); an intermediate
range (e

1
(u

r
!u~"u`!u

r
"d(e

2
) in which the values of j

r
(u~, u`, u

r
)

are almost constant; a third range further away from u
r

(u
r
!u~"

u`!u
r
"d'e

2
) in which the value of j

r
(u~, u`, u

r
) will deviate. In general, the

values of e
1

and e
2

for the two-point formula are smaller than those for the
three-point formula.

At the second step, one has to determine the intermediate range in which the
experimental FRF data will be used at the third step for the "nal estimation. The
values of j

r
(u~, u`, u

r
) in this range can be "tted by a linear function of u~ (or

u`). The following three criteria must be satis"ed: "rstly, the linear function must
be close to a constant; secondly, the discrepancy between the values of
j
r
(u~, u`, u

r
) must be small; "nally, there must be a su$cient number of FRF

data in the range. This intermediate range may not appear when the noise is too
important or the modes are too close. In this case, the "nite di!erence formulation
cannot be used.

At the third step, one solves the system of equations (38) and (39) to estimate the
modal parameters using any pseudo-inverse or normal equation approach with the
experimental FRF data in the appropriate range found at the second step. The
estimated values for the modal parameters are generally close to the mean values of
those calculated from equations (31) and (32) by using FRF data in the same range.
However, a least-squares solution is a better way for averaging.

6. CONCLUSION

A new "nite di!erence method for modal parameter estimation has been
proposed and tested with both analytical and experimental frequency response
data. This method, called the three-point "nite di!erence method, uses di!erences
between the frequency response data at three frequencies in the vicinity of a natural
frequency to estimate this natural frequency together with the damping and the
residue. The estimation accuracy of the three-point and two-point "nite di!erence
methods have been compared. The comparison has shown better estimations when
using the three-point di!erence method for frequency response functions with not
well-separated modes. While being an extension of the two-point "nite di!erence
method, the three-point "nite di!erence method remains very simple and has an
application potential, especially towards automating the procedure for simple
modal test cases when the modes are not very close and the dampings are not very
strong. Furthermore, the examples seem to indicate that the value of the damping
ratio estimated by the two-point formula and that estimated by the three-point
formula could be used as the upper bound and the lower bound respectively.



MODAL PARAMETER ESTIMATION 275
ACKNOWLEDGMENTS

The authors gratefully acknowledge the anonymous referees for their suggestions
to improve this paper.

REFERENCES

1. C. C. KENNEDY and C. D. P. PANCU 1947 Journal of Aeronautical Sciences 14, 603}625.
Use of vectors in vibration measurement and analysis.

2. D. J. EWINS 1984 Modal testing: ¹heory and practice. Baldock, Hertfordshire, England;
New York: Research Studies Press Ltd; Wiley.

3. R. J. ALLEMANG 1995 <ibrations: Experimental modal analysis UC-SDRL.
4. M. RICHARDSON and D. L. FORMENTI 1982 Proceedings, International Modal Analysis

Conference, 167}182. Parameter estimation from frequency response measurements
using rational fraction polynomials.

5. H. VAN DER AUWERAER and J. LEURIDAN 1987 Mechanical Systems and Signal Processing
1, 259}272. Multiple input orthogonal polynomial parameter estimation.

6. R. J. ALLEMANG, D. L. BROWN and W. FLADUNG 1994 Proceedings, International Modal
Analysis Conference, 501}514. Modal parameter estimation: a uni"ed matrix polynomial
approach.

7. W. HEYLEN, S. LAMMENS and P. SAS 1997 Modal Analysis ¹heory and ¹esting. Katholieke
Universiteit Leuven.

8. N. M. M. MAIA, J. M. M. SILVA, J. HE, N. A. J. LIEVEN, R. M. LIN, G. W. SKINGLE, W. M.
TO and A. P. V. URGUEIRA 1996 ¹heoretical and experimental modal analysis, Baldock,
Hertfordshire, England: Research Studies Press Ltd.


	1. INTRODUCTION
	2. TWO-POINT APPROXIMATION
	3. THREE-POINT APPROXIMATION
	Figure 1

	4. EXAMPLES WITH ANALYTICAL DATA
	TABLE 1

	5. EXAMPLE WITH EXPERIMENTAL DATA
	Figure 2
	Figure 3
	TABLE 2
	Figure 4
	Figure 5
	TABLE 3
	Figure 6

	6. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

